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Abstract. Blind deconvolution of motion blur is hard, but it can be
made easier if multiple images are available. This observation, and an
algorithm using two differently-blurred images of a scene are the subject
of this paper. While this idea is not new, existing methods have so far
not delivered very practical results. In practice, the PSFs corresponding
to the two given images are estimated and assumed to be close to the
latent motion blurs. But in actual fact, these estimated blurs are often
far from the truth, for a simple reason: They often share a common,
and unidentified PSF that goes unaccounted for. That is, the estimated
PSFs are themselves “blurry”. While this can be due to any number
of other blur sources including shallow depth of field, out of focus, lens
aberrations, diffraction effects, and the like, it is also a mathematical
artifact of the ill-posedness of the deconvolution problem. In this paper,
instead of estimating the PSFs directly and only once from the observed
images, we first generate a rough estimate of the PSFs using a robust
multichannel deconvolution algorithm, and then “deconvolve the PSFs”
to refine the outputs. Simulated and real data experiments show that this
strategy works quite well for motion blurred images, producing state of
the art results.
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1 Introduction

Motion blur caused by camera shake is one of the major reasons for low quality in
imaging. Strictly speaking, the point-spread-function (PSF) of motion blur at a
given point on an image is related to the motion type, the position and the depth.
Yet in general, it is commonly modeled globally or locally as a shift-invariant
convolution process:

g = u⊗ h+ n (1)

⋆ This work was supported in part by the US Air Force under Grant FA9550-07-1-
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 1. Real image blind deconvolution example using the proposed algorithm. (a)-(b)
input blurry images. (c) deblurred image. (d) estimated PSFs. (e)-(g) zoomed (a)-(c).

where g and u represent the observed image and the latent sharp image, respec-
tively; h is the blur PSF; n denotes additive noise, and ⊗ is the convolution
operator. Recovering both u and h from a single observed image is the long-
studied blind deconvolution problem. This is a highly ill-posed problem for a
variety of reasons. We concentrate in this paper on one such reason, which goes
often neglected. Namely, consider s as an arbitrary function which has a convo-
lution inverse:

s⊗ s−1 = δ, (2)

we can see that any pair < û, ĥ > could be a solution to (1) if

û = u⊗ s−1; ĥ = h⊗ s. (3)

To pick a solution that is more like the latent one, prior knowledge based on,
say, natural image statistics is required. It has been found that natural image
gradients are usually distributed through ”heavy-tailed” functions, where the
heavy-tail corresponds to high-valued derivatives of the salient structures (e.g.
edges) of image content [1]. In [2, 3] sparsity-based regularization terms are em-
ployed to constrain the derivatives of the estimate û. In [4] Joshi et al. predict
sharp edges using edge profiles and estimate the blur kernel from the predicted
edges. Cho et al. analyze the observation on edges and reconstruct the motion
kernel using the Radon transform [5]. Unfortunately, if the blurry observation
does not contain salient edges or textures most single-image blind deconvolution
approaches can fail in the presence of small amounts of noise.

It has been known that the ill-posed nature of blind deconvolution can be
remedied if multiple observations {gi} of the same scene u are available:

gi = u⊗ hi + ni , i = 1, 2, · · · (4)
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In practice, there are many situations where we can get multiple images with
different motion PSFs, such as burst-mode photography or video capture. Li et
al. developed a camera system capable of capturing two images simultaneously
with two different shaking blur PSFs perpendicular to each other [6]. For these
cases multichannel blind deconvolution algorithms are needed. Harikumar et al.
proposed an algorithm that first estimates the blur kernels using eigenvalue
analysis of a special matrix constructed from the input images, and then restores
the latent image using a standard non-blind deconvolution method [7]. Their
estimation is based on the following relation:

g1 ⊗ h2 = g2 ⊗ h1 (5)

It is shown that perfect recovery of the PSFs requires noise-free images and
channel coprimeness, i.e. a scalar constant is the only common factor of the blur
PSFs. In [8] Giannakis et al. developed another algorithm finding a restoration
filter-bank based on Bezout’s identity of coprime polynomials. Both methods are
highly sensitive to noise. Rav-Acha et al. developed a bi-channel deconvolution
approach for motion deblurring, which estimates the PSFs in a way similar to
[7] and meanwhile keeps the sparsity of each PSF by modeling it as a directed
line [9]. However, this model is too simple and cannot deal with real camera
shake. In [10] Šroubek et al. proposed a method where both the image u and the
blur PSFs {hi} are estimated simultaneously by minimizing an energy function
including a fidelity term, an l1 norm regularizer on image gradients, and a multi-
channel PSF regularizer based on (5). Noise sensitivity is nicely mitigated in this
algorithm, and it can handle large PSFs without too much computational cost.
However, because the exact size of the blur kernel is unknown, the ill-posedness
still persists. Namely, as alluded to earlier, the estimated PSFs can be repre-
sented as convolutions between the latent PSFs and a common spurious kernel
s as follows:

ĥi = hi ⊗ s (6)

since the relationship (5) still holds with s:

g1 ⊗ h2 ⊗ s = g2 ⊗ h1 ⊗ s. (7)

As we will show in Section 2, when the noise level is high, this common kernel s
would make ĥi blurry and cause artifacts (such as ringing) in the output û. In
fact, Most multichannel deconvolution algorithms utilizing the relation (5) would
more or less suffer from such “hidden” blur in their PSF estimation. However,
This common problem has seldom been discussed before.

To further improve the estimation accuracy on both u and {hi}, a new mul-
tichannel deblurring strategy is proposed in this paper based on the idea of PSF
refinement, or ”deblurring the (estimated) blur kernels”. First, a preliminary
estimate of the PSFs is obtained using an algorithm similar to [10]. Next, we
refine the estimate by removing the common factor s through a multi-channel
deconvolution procedure. Both steps are formulated as constrained optimization
problems. Augmented Lagrangian method (ALM) and iteratively re-weighted
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least square (IRLS) are employed for the optimization. Finally, with the high-
fidelity estimates of the blur kernels, the latent image is calculated through a
standard non-blind deconvolution step. This paper is organized as follows. Sec-
tion 2 gives a rough description of the preliminary PSF estimation method.
Section 3 discusses the blur kernel deconvolution problem. Simulated and real
image deblurring experiments are illustrated in Section 4 to show the algorithm
performance, and Section 5 concludes this paper.

2 Preliminary PSF Estimation

While the general approach we present is applicable when multiple blurry frames
are given, for simplicity, we consider only two observations g1 and g2. Let ĥ1
and ĥ2 be estimates of the original unknown PSFs h1 and h2, respectively. The
multichannel PSF estimation of Harikumar [7] is based on the relation, that if

ĥi = hi, then
g2 ⊗ ĥ1 − g1 ⊗ ĥ2 ∼ ϵ , (8)

where ϵ is an error term proportional to noise variables n1 and n2. In the noiseless
case (ni = 0), ϵ = 0. In the case of AWGN (additive white Gaussian noise,
ni ∼ N(0, σ2)), ϵ ∼ N(0, Σ), where1 Σ = σ2(cov(h1) + cov(h2)). Relation (8)
can be proved by simple substitution for gi from (4). If more than two observed
images are available, we take all possible pairs and write a similar equation for
each. We now show that this relation is an effective means of estimating PSFs
directly from the observed images.

Using the vector-matrix notation, we can rewrite (8) as [G2,−G1]h ∼ ϵ,
where h = [hT

1 ,h
T
2 ]

T represent the vectorized blur kernels and Gi the convolu-
tion matrix based on gi. The maximum-likelihood (ML) estimation of the blur

kernels for AWGN is equivalent to ĥ = argminh ∥ϵ∥2 with a constraint, i.e.,

ĥ = argmin
h

hT [G2,−G1]
TΣ−1[G2,−G1]h s.t. ∀i

∑
j

hi(j) = 1 . (9)

The constraint is necessary to avoid the trivial solution of ĥi = 0. Note that Σ
depends not only on the noise variance but also on the covariance matrices of
hi’s, which are not known a priori. For low noise levels, Σ can be neglected. For
higher noise levels (SNR ≤ 30dB) it is demonstrated in [10] that by simple linear
transformation Σ can be partially eliminated as well. The main shortcoming of
the ML estimator is the fact that correct PSFs convolved with an arbitrary
spurious kernel (ĥi = s ⊗ hi) are also ML estimates. In other words, correct
PSFs and their commonly blurred versions are equally probable. One way to
avoid this indeterminacy of solution is to constrain the maximum size of the
estimated PSFs, so that the only allowable spurious kernel would be a scalar.
However, this requires prior knowledge of the size of the original PSFs, which is
generally not available.

1 cov(h) = HHT , where H is the convolution matrix based on h.
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Since image u and hi’s are related through (4), prior knowledge on u can
be used to implicitly constrain the solution of hi’s. We also include a positivity
constraint on PSFs and use the objective function in (9) as a regularization term.
Let A({hi}) = ∥g2⊗h1−g1⊗h2∥2 and B(u) be some convex image regularization
term, such as Total Variation [11]. Then we minimize an objective function

E(u, {hi}) =
∑
i

∥hi ⊗ u− gi∥2 + αA({hi}) + βB(u) (10)

with respect to the image u and with respect to the blur kernels hi’s in an
alternating manner, and subject to ∀i hi > 0. Weights α and β are parameters
depending on the noise level. Since the minimization is constrained and edge-
preserving priors B(u) are based on the ℓ1 norm, a fast converging ALM is
applied, which guarantees convergence for this type of problems [10].

3 PSF Refinement

Though the estimation approach in Section 2 provides better estimates than
the simple ML estimator, it still suffers from indeterminacy of solutions. This is
primarily noticeable in the case of sparse PSFs, such as motion blurs, and in the
presence of strong noise. Consider plugging the estimates ĥi = s ⊗ hi into the
regularization term A({hi}):

A({ĥi}) = ∥g2 ⊗ h1 ⊗ s− g1 ⊗ h2 ⊗ s∥2

= ∥ (n2 ⊗ h1 − n1 ⊗ h2)⊗ s∥2 (11)

Minimizing this term tends to select the kernel s that performs like a low-pass
filter, which would inevitably lead to blurry PSFs and ringing artifacts in the
output image. A simulated example is given in Fig. 2-3, where as the noise level
increases the estimated PSFs become more and more blurry. In this section, we
propose a way to address this problem.

Since s is a common kernel among the estimates, it can be deconvolved again
through a multichannel blind deconvolution procedure. The degradation model
for the output PSFs in Section 2 can be written as

h0i = hi ⊗ s+ εi. (12)

where in this section {h0i } denotes the blurry PSFs estimated from the previ-
ous step in Section 2. Since motion-caused PSFs describe the path of camera
motion, they tend to be sparse. So a sparsity-based regularization term should
be considered. Besides, we add positivity constraints for both s and {hi}, and
the PSF refinement can thus be treated as optimizing the following objective
function:

E(s, {hi})=
∑
i

∥s⊗ hi − h0i ∥2 + δΨ(s) +

δΨ({hi}) + γΦp({hi}) (13)
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Fig. 2. Simulated blurry images using model (4).

where Ψ(·) denotes the positivity constraint:

Ψ(h) =
∑

x ψ(h(x)), ψ(t) =

{
t if t ≥ 0
+∞ otherwise

(14)

and Φp(·) represents an lp norm regularizer, which can be written in vector form:

Φp({hi}) = ∥h∥pp (15)

where again h represents a stacked column vector for {hi}. The sparsity of the
PSFs can be preserved when p ∈ [0, 1] [3]. However, in general for p < 1 the cost
function is no longer convex, which complicates the optimization. To address
this problem, we use an iterative re-weighted least square (IRLS) method that
describes the regularization term through a weighted least square form:

ΦW(h) = hTWh (16)

where the diagonal weight matrix W is updated during the iteration minimizing
(13). For example, in the j-th iteration when the estimate hj−1 is available, we
have

Wj−1 = diag({w−1
i,x}) (17)

where wi,x = |hj−1
i (x)|2−p + η. η is a small constant to prevent division by zero.

As the iteration converges: hj−1
i → hj

i , the regularization term becomes:

hjTWj−1hj → hjTWjhj ≈ ∥hj∥pp (18)
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(a) (b) (c) (d) (e) (f)

Fig. 3. PSFs estimated from the simulated blurry image pairs (see Fig. 2) with different
levels of AWGN using the blind deconvolution algorithm described in Section 2. (a),
(b): results of noise level σ = 0. (c), (d): results of noise level σ = 1. (e), (f): results of
noise level σ = 5.

which is equivalent to an lp norm regularizer.
Minimizing (13) is achieved through a procedure that alternates minimizing

s and {hi}. The procedure is described in Algorithm 1.

Algorithm 1

1. Set j = 0, and initialize sj .
2. hj+1 = argminh

∑
i ∥s

j ⊗ hi − h0
i ∥2 + δΨ(h) + γhTWjh.

3. sj+1 = argmins

∑
i ∥s⊗ hj+1

i − h0
i ∥2 + δΨ(s).

4. j ← j + 1.
5. End the algorithm if stopping criterion is satisfied, otherwise go to Step 2.

Because the positivity constraint is not quadratic, solving both Step 2 and
3 in Algorithm 1 directly is not trivial. Split Bregman method (or ALM) is
implemented here. Take Step 2 for example (and Step 3 can be solved in a
similar way), which minimizes:

min
{hi}

∑
i

∥sj ⊗ hi − h0i ∥2 + δΨ(hi) + γhTWjh. (19)

This is equivalent to a constraint minimization problem:

minh,v ∥Sjh− h0∥2 + γhTWjh+ δΨ(v)
s.t. v = h

(20)

where Sj denotes a convolution matrix of sj . The split Bregman tackles this
problem by considering a function:

L(h,w) = ∥Sjh− h0∥2 + γhTWjh+ δΨ(v) + λ∥h− v − b∥2 (21)

and solve it with the following iterative algorithm:
Once the refined PSFs {ĥi} are available, the deblurred image can be esti-

mated by minimizing the following cost function:

E(u) =
∑
i

∥ĥi ⊗ u− gi∥2 + βB(u) (22)
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Algorithm 2

1. Set v1 = b1 = 0 and n = 0.
2. hn+1 = argminh L(h,vn)⇐⇒[
SjTSj + γWj + λI

]
hn+1 = SjTh0 + λ (vn + bn)

3. vn+1 = argminv L(hn+1,v)⇐⇒
vn+1[x] = max

(
(hn+1 − bj)[x]− δ

2λ
, 0
)

4. bn+1 = bn − hn+1 + vn+1.
5. End the algorithm if stopping criterion is satisfied, otherwise set n ← n + 1 and
go to Step 2.

where in our implementation B(u) is selected as a gradient-based TV regularizer.

4 Experimental results

In this section we test the performance of the proposed method compared with
other blind deconvolution algorithms. Firstly simulated experiments are carried
out where the latent image is available and the restoration performance can be
quantitatively measured using full-reference image quality metrics such as mean
squared error (MSE). We simulated a set of images according to the model
(4) with different signal-to-noise-ratio: SNR = 34, 24, 20, 17, 14dB. The original
image and the latent PSFs are illustrated in Fig. 2. State-of-the-art single-image
blind deconvolution methods [12] and [13] are also implemented for comparison.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. PSFs for the simulated experiments with SNR = 17dB. (a), (e) latent PSFs.
(b), (f) output PSFs of [13]. (c), (g) output PSFs of [12]. (d), (h) proposed outputs.

Fig. 4 illustrates examples of the PSFs estimated from the image pair with
SNR = 17dB, where noise effects can be observed. Xu et al.’s method [12]
captured the basic shape of the latent PSFs, but these are somewhat blurry
PSFs themselves, and contaminated with strong noise, which leads to artifacts
in the output image (see Fig. 5 (d)). Similar noise effect can be observed in
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(a) (b) (c) (d) (e)

Fig. 5. Simulated experiments with SNR = 17dB. (a)-(b) input images. (c) output of
[13] using the image (b). (d) output of [12] using image (a). (e) the proposed output.

the output of [13] for the second PSF (Fig. 4 (f)), while this method failed in
estimating the first one (Fig. 4 (b)). The proposed algorithm provides PSFs that
are much cleaner and sharper (Fig. 4 (d), (h)), and also gives an output image
with lower MSE compared with the other two. The MSE values for the deblurred
images using different algorithms are given in Table 1.

Table 1. Performance of the deconvolution approaches evaluated in MSE.

SNR 34dB 24dB 20dB 17dB 14dB

Proposed 95.45 121.07 152.85 183.17 233.70

[12] (h1) 132.76 139.69 189.48 240.02 304.54

[12] (h2) 132.69 160.38 187.60 198.50 339.94

[13] (h1) 814.55 816.15 823.04 850.10 998.45

[13] (h2) 234.53 239.21 259.17 312.39 434.68

Additional tests using real images with large blur kernels are given in Fig. 1
and Fig. 6-7, where it can be seen that the proposed method successfully removed
motion blur, and the estimated PSFs are clean and describe the motion path
quite well. In Fig. 6, the outputs of the preliminary deconvolution step described
in Section 2 are also provided in (c) and (g). Ringing artifacts caused by the
spurious kernel can be easily observed, which makes the letters in the image
content hard to recognize. However, after the PSF refinement these letters are
more distinct (see (h) in Fig. 6). In Fig. 7 we compare our method with a state-
of-the-art dual image deblurring method [14]2. Both completely removed the
motion blur, and generated PSFs that are sharp and clean. Details on the image
of the map are successfully recovered by the two methods.

2 The test images are extracted from the paper [14].
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(a) (b)

(c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 6. Real image blind deconvolution example using the proposed algorithm. (a)-(b)
input blurry images. (c) deblurred image only using the preliminary deconvolution step
described in Section 2. (d) proposed output. (e)-(h) zoomed (a)-(d). (i)-(j) estimated
PSFs using the preliminary deconvolution step described in Section 2. (k)-(l) refined
PSFs.

5 Conclusions and Discussions

A new algorithm for motion deblurring using multiple images is described in this
paper. This approach first roughly estimates the PSFs by minimizing a cost func-
tion incorporating a multichannel PSF regularization term and an l1 norm-based
image sparsity regularizer. This step generates reasonable, but blurry PSFs,
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(a) (b)

(c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 7. Real image blind deconvolution example using the proposed algorithm and
[14]. (a)-(b) input blurry images. (c) deblurred image using [14]. (d) proposed output.
(e)-(h) zoomed (a)-(d). (i)-(j) estimated PSFs using [14]. (k)-(l) estimated PSFs using
proposed approach.

which can be viewed as the latent ones convolved by a common, hidden, and
spurious kernel. A refinement step based on the PSF sparsity and positivity
properties is then carried out to deconvolve the estimated PSFs. Finally the
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output image is computed through a standard non-blind multichannel decon-
volution procedure. ALM and IRLS are implemented to efficiently optimize the
cost functions involved in this system.

Another possible way of removing the spurious kernel is by adding a PSF
sparsity constraint into the preliminary multichannel PSF estimation function
(10) directly. We tried such method but the results were not good. Due to the
complexity of the objective function with so many constraints on images and
kernels, the resulting algorithm can become tangled in local minima, or fail to
converge. However, experiments on both simulated and real image sets illustrate
that the proposed strategy of post refinement on PSF estimation can efficiently
reduce the PSF blur, mitigating the estimation sensitivity to noise and PSF size.
Future work involves extending this approach to spatially variant blur.
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